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Abstract. A family of fully triangulated graphs is given. for which the critical percolation 
probabilities pT and pH are unequal, and the clusters-per-site function considered by Sykes 
and Essam is a polynomial. The graphs are modifications of an example of Van den Berg. 

1. Introduction 

Since percolation models were introduced by Broadbent and Hammersley (1957), a 
fundamental problem has been the determination of critical probabilities for various 
graphs. An early breakthrough on this problem was the non-rigorous method of 
determining exact critical probabilities proposed by Sykes and Essam (1964). The 
Sykes and Essam approach produced conjectured values of for the square lattice 
bond model and triangular lattice site model, 2 sin( 7 ~ /  18) for the triangular lattice 
bond model, and 1 - 2 sin( 7 ~ / 1 8 )  for the hexagonal lattice bond model. The Sykes 
and Essam paper stimulated mathematical research in percolation theory which led 
to the rigorous verification of these values by Kesten (1980, 1982) and Wierman 
(1981), following significant developments in the theory by Seymour and Welsh (1978) 
and Russo (1978). For discussion of the proofs of these results, the reader may consult 
the survey by Wierman (1982) or the monograph by Kesten (1982). 

The Sykes and Essam method is based on the limiting open clusters-per-site function 
for a graph. For each graph, this function is assumed to have a unique singularity, 
denoted by pE, which is interpreted as the critical probability. By deriving a relationship 
between the clusters-per-site functions of matching graphs using Euler’s law, and either 
the self-matching property of a graph or a transformation between a graph and its 
matching graph, Sykes and Essam determined the values given above without explicitly 
determining the clusters-per-site functions for the graphs. The function is not explicitly 
known for any of these graphs. Also, it is unknown whether a singularity actually 
exists or  is unique. For the square lattice bond model, Kesten (1981) has shown that 
the clusters-per-site function is analytic except at p = i, and that it has two continuous 
derivatives everywhere in [0,1]. In this paper, a family of graphs is presented for 
which the clusters-per-site function may be explicitly determined, and is found to  have 
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no singularity. Note that the term ‘singularity’ does not necessarily refer to a point 
of non-analyticity. However, this is the usual interpretation, with no well defined 
alternative interpretation developed in the literature. 

Sykes and Essam also implicitly assume that there is a unique critical probability 
value, or, in other words, that all alternative interpretations of the critical probability 
or percolation threshold concept yield the common value pE. The most common 
alternative interpretations of the critical probability concept are based on the probabil- 
i ty  of existence of infinite open clusters and on expected size of open clusters. To 
define these critical probabilities, consider site percolation on a graph G in which each 
site is open with probability p,  0 s p ZG 1, independently of all other sites. Let Pp denote 
the corresponding probability measure, and E, denote the corresponding expectation 
operator. The open cluster containing a site s, denoted W,, is the maximal connected 
subgraph of open sites in G which contains s. The infinite cluster size critical probability 
is defined by 

For a connected graph G, the value of p H  is independent of the choice of site s. The 
mean cluster size critical probability is defined by 

which is also independent of the choice of s if G is connected. For technical reasons, 
Seymour and Welsh ( 1978) defined the sponge-crossing critical probability as the 
threshold above which the probabilities of existence of a path of open sites that connects 
opposite sides of an increasing sequence of rectangles in the graph converge to a 
positive limit. The sponge-crossing critical probability, denoted p s ,  proved to be the 
key to the rigorous determinations of critical probabilities mentioned above, where it 
was proved that p H  = p T  = p s .  The relationship of the Sykes and Essam definition to 
the other three critical probabilities is unclear, however. 

One conclusion of the method of Sykes and Essam is that the critical probability 
of the site percolation model on any fully triangulated planar graph is i. However, 
Van den Berg (1981) constructed a fully triangulated planar graph for which the site 
percolation model has critical probability pH = p r  = 1. This example is still consistent 
with the belief that all critical probabilities must be equal for fully triangulated planar 
graphs, however. In this paper, by modifying Van den Berg’s example, graphs are 
constructed for which the critical probabilities may be explicitly determined, and which 
exhibit more unusual behaviour. The graphs constructed as counterexamples are not 
regular, and may be considered ‘non-physical’. However, while regular lattices are 
more commonly considered for percolation models, the Sykes and Essam claims were 
not made only for regular graphs, and have been asserted for non-regular graphs. For 
each x in (0, I ) ,  there exists a fully triangulated graph G, with pr = x and p H  = 1 for 
the site percolation model. Thus the two critical probabilities are not equal, and in 
fact are related only by the trivial inequality that for any graph p7- s pH.  Note also 
that, since the bond model on G, is easily seen to have p H  = 1, it is possible for a bond 
percolation critical probability ( p H )  to be strictly greater than a site percolation critical 
probability ( p T )  for the same graph. For this class of graphs it is also possible to 
determine the limiting mean clusters-per-site function that is the basis for the Sykes 
and Essam method of determining critical probabilities. The function is actually a 
polynomial. Thus there is no singularity of the function, so the critical probability p E  
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is not well defined. Graphs satisfying these properties are constructed in § 2. The 
clusters-per-site function is evaluated in § 3. 

From any planar graph G which is not fully triangulated, a fully triangulated graph 
G' may be constructed by inserting one or more diagonals in each non-triangular face. 
By the inclusion principle, the critical probability of G must be at least as !arge as the 
critical probability of G'. Thus, the Sykes and Essam conjecture that the critical 
probability of a fully triangulated graph is 4 implies that the critical probability of 
every planar graph (without multiple edges) is at least 4. Van den Berg's example and 
the examples in § 2 do not disprove this conjecture for the critical probability pM 
However, a different modification of Van den Berg's example produces a graph with 
critical probability pH at most l / ( k -  11, for each positive integer k. This class of 
graphs is discussed in § 4. 

2. Unequal critical probabilities 

2.1. Van den Berg's example 

A graph GO, shown in figure 1, is constructed as a nested sequence of triangles 
T I ,  T,, T,, , . , with alternating orientations. For odd integers n, the triangle T,, points 
upward, while for even integers n, T,, points downward. To provide a convenient 
origin, insert a site To in the centre of T1, and insert bonds that connect TO to each 
of the three vertices of T I .  For each n 3 1, label the sites of T,, counter-clockwise 
from the positive x axis as rn.l, t,,,>. and r,,,,. 

Though Go is not fully triangulated, a fully triangulated graph G" may be construc- 
ted by inserting a bond b,,,l connecting to tn+2 .1  for each n 3 1 and i = 1 , 2 , 3  (see 
figure 2). The graph G' was constructed by Van den Berg (1981) as a counterexample 
to the claim by Sykes and Essam that site models on fully triangulated graphs have 
critical probability i. For G", pH = p r  = 1, since the largest integer n such that T,, is 
reached by an open path from the origin is bounded by 2 X  + 1, where X = inf{ k 2 1 : 
r,,,l is open for all n = 2k, 2k + 1 and i = 1,2,3} is a geometrically distributed (parameter 
(1 - P ) ~ )  random variable and is thus finite almost surely (AS) if p < 1. 

Figure 1. Figure 2. 
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2.2. The class of graphs 

For each x E (0 ,  l) ,  we now construct a fully triangulated graph G, from G". On each 
bond b,,,,, insert [x-"1 equally spaced sites labeled b,,,,,,, 1 S js [x-"1 as bfl,,  is travelled 
from t,,! to t , ,+2,, .  ([ . ]  denotes the greatest integer function.) Insert bonds connecting 
b,,,,,, to f , , ,  and t,,.l-,(mod.7) for each n, i and ] (see figure 3). 

The additional sites and bonds were inserted in such a manner that the expected 
cluster size is increased greatly, but the probability of existence of an infinite cluster 
is relatively unchanged. For each G,, 0 < x < 1, the site model critical probability p H  
is 1, by the same reasoning used for G". This reasoning also applies to the bond model 
to obtain p H  = 1, by considering possible barriers of 12 bonds containing the boundaries 
of alternate triangles in the original sequence. 

Figure 3. Figure 4. 

2.3. Reduction to a simpler graph 

As a first step in evaluating the critical probability pT for G ,  we will derive probability 
bounds for a simpler graph which has percolative behaviour similar to that of G,. 

For fluid to pass through a line segment b,,, in G,y, all [x-"1 sites on the segment 
must be open. Since this event has probability p["- '] ,  which converges to zero rapidly 
as n +a?, we will neglect this possibility in constructing an approximating graph. 
Likewise, if the sites t,,, and t,,,+,-, .i, are both open, then fluid from one will wet 
the other if any site on bn- , , ,  is open. The probability of this event is 1 -(1 -p) [ . ' - " ] ,  
which converges rapidly to 1 as n + a. To approximate this behaviour, consider the 
two sites to be connected by a bond. 

Therefore we will study the approximating graph G", shown in figure 4, which is 
constructed by deleting all bonds b,,, from G', and inserting bonds C,,! connecting f,,,i 
and tn,r+l,mod 3 , r  i = 1, 2, 3, for each n 2 2 .  CA provides a good approximation to the 
percolative behaviour of G, when considering probabilities of open connections 
between sites far from the origin. 

2.4. Probability bounds for G" 

Note that if one site in T,, is wetted from the origin in G", then any other site of T,, 
that is open is wetted directly from it through one of the bonds c,,,, i = 1,  2 ,3 .  Therefore 
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each site that is wetted from the origin in GA is wetted by fluid flowing along a path 
which does not backtrack toward the origin, i.e. does not pass through a site of Tn-l 
after it has passed through a site of T,. Whether a site of T, iswetted in G" depends 
only on which sites of T, are open and which sites of T,-, are wetted from the origin 
in G". Thus the probability that a site in T, is wetted from the origin in G" may be 
computed by a Markov chain approach. 

Let X, = 0, 1, o r  2, as the number of sites in T,, which are wetted is 0, 1, or 2 or 
more respectively. {X,}, n 3 0, is a Markov chain with an absorbing state 0. The cases 
where two or three sites of T, are wetted may be combined into one state, since in 
either case all three sites of T,,, are adjacent t o  wetted sites, so the transition probability 
vectors are equal. The transition matrix for the Markov chain {X,} is given by 

P =  qz 2pq2 p3+3pzq . i '  q3 3pq2 p"3p'q ' I  
Since the absorbing state corresponds to the eigenvalue of 1, by diagonalising P 

to compute its powers easily (e.g. see Karlin and Taylor (1975), p 541) one sees that 
the exponential rate of decay of the probability that T, is wetted is determined by the 
second largest eigenvalue, which is 

f (  p )  = $( p 3  + 3p2q) +;( p 6  + 6 p 5 q  + 9pJq' + 4p2q4)' ", 

where q = 1 - p .  Clearly f is a continuous function of p ,  and one may check that f is 
strictly increasing from 0 to 1. Thus there exist constants K and k ,  independent of n, 
for which 

kf ( p ) "  s P" (i, j )  s Kf ( p)" 

for all i, j =  1,2 .  

2.5. Probability bounds for G, 

We first obtain an upper bound for the probability that T, is wetted in G,. Note that 
inserting the bonds c , , ~  in G, creates a non-planar graph, denoted Ge. Since G, is a 
subgraph of Gf, 

P( T,,,,, wet in G,/ T, wet) G P( T,,,, wet in Gel T,, wet). 

Then 

P(T,,, wet in G? wet) 

s P( T,,, wet in GAIT, wet) + P(al1 sites on bk., are open for some 

s ~ f ( p ) " + 3 m p [ " - ~ J  

< 2Kf ( P )  

n G k s n + m - 1, i = 1 , 2 , 3 )  

for n 2 N (  m )  sufficiently large. Therefore 

P(T, wet in G,) 

s P ( T ,  wet in G t )  
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[ n / m l  
=P(To open) n P(T(k+ljm wet in GtlTkm wet in G t )  

k = l  

[ n l m l  
x fl P(T(k+ljm wet in G $ / T k m  wet in G t )  

k = N ( m ) / m  

s c l ( p ,  m ) ( 2 ~ f (  p)m)(n-N(mi ) 'm+ '  

=CAP, m)K"" f (p)"  

for n 3 N (  m), where C, and C2 are independent of n. 
Follow a similar procedure to obtain a lower bound. Note that by deleting all the 

bonds on b,,l connecting sites b,,,,,, a new graph GF is created (see figure 5) .  The 
connection between two open sites of T,, which is certain in G: fails in G? with 
probability (1 - P ) [ ~ - " ' .  Thus 

P(T,, wet in G x ) 3 P ( T , ,  wet in G : ) .  

Figure 5. GF. 

To calculate a lower bound for G?, we use 

P( T,,,, wet in G:/  T,, wet) 

2 P( T,,,, wet in G t l  T,, wet) - P(al1 sites on b k . i  are closed for some 

2 kf( p)" - 3 m (  1 - P ) [ ~ - " ]  

n s k s n + m - 1, i = 1 , 2 , 3 ) ,  

* f k f ( p ) "  
for n 3 M (  m) sufficiently large. 

Continuing as before, we obtain 

P(T ,  wet in G,)*CC,(p,  m)k" '"f (p )"  

for n 3 M (  m )  where C3 is independent of n. 
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2.6. Evaluation of p7 

Note that if a site of T, is wet then there are at least 2[x -" ]  sites and at most 3[x -" ]  
sites of b,,,, i = 1 , 2 , 3 ,  which are adjacent to a wet site of T,. Therefore 

2p[  x-" ] + 1 s E ( WO n { T,, u { bn,L : i = 1 , 2 , 3 } } /  T, wet) s 3p[  x -"]  + 3 ,  

since each b, r , ,  adjacent to a wet site of T, is in the open cluster WO with probability 
P. 

Multiplying by P( T, wet), using the bound above, and summing over n, we obtain 

E[W"IZ CAP, m ) + G ( P ,  m )  2 k n ' " f ( P ) " ( 2 p [ x - " l + 1 )  
n = V ( m )  

where C,( p ,  m )  represents the expected number of sites in the open cluster WO inside 
the triangle with vertices rw(m). Since this series diverges when k " " f ( p ) / x s  1 ,  we 
have that p ~ f - l ( x / k " " )  implies p s p r .  Thus f - ' ( x / k ' ' " ) s p j -  for any positive 
integer m, so f - ' ( x )  z p r .  

Similarly, 
r 

E [ w , , I ~  CAP,  CAP, m )  C K n " f ( p ) " ( 3 p [ x - " I + 3 )  
n = NI I? ) 

which converges when K " " ' f ( p ) / x  < 1 .  Therefore, f - ' ( x / K " " )  S Pr for any positive 
integer m, so f - ' ( x )  < pr .  

Thus, Pr = f - ' ( x )  for G,. Since f - '  is continuous and strictly increasing from 0 to 
1 ,  for every y E ( 0 , l )  there exists a graph, Gfcy,,  which has P r  = y and p H  = 1. 

3. Expected clusters-per-site function 

We now evaluate the limiting open clusters-per-site function for the graphs G,, 
0 < x < 1. In the following, computations are given for the expected clusters-per-site 
functions only for regions bounded by the triangles with vertex sets { Tn} .  This is done 
for simplicity, with the same limit obtained for any increasing sequence of triangles 
centred at the origin or any other fixed point, or for an increasing sequence of similar 
rectangles centred at a common point. 

Consider a line segment bn.l in G,. If either site tn+l,r or f , + l , r + ( - l ) n ( m o d  3 )  is open, 
then all open sites bn,l,, on b, I are in a single open cluster on G, which contains a site 
of T,+]. However, if both and tn+l , r+(- l )"(mod3) are closed, each run of successive 
open sites on b, I is in a distinct open cluster. 

To count the open clusters in the region bounded by the triangle with vertices T,, 
we count separately the clusters which contain a vertex of Tk for some k s n, and the 
clusters which contain no vertex of Tk for any k,  which are clusters formed by runs 
of open sites in b k  ,, 1 

Note that there are 3 n  + 1 sites in T,, and thus at most 3 n  + 1 open clusters 
containing such sites. Since there are 

k n, i = 1, 2, 3. 

n - 2  c 3 [ x - k ] + 3 n + l  
k = l  

sites in the region, these clusters do not contribute to the limiting clusters-per-site 
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function. The limiting clusters-per-site function is thus determined entirely by the 
runs on the line segments b k , , ,  1 s k s n - 1, i = 1,2,3.  

To count open clusters on bk,,, define inductively an alternating sequence of random 
variables by 

O1 = infij: bk,,,] is open}, Cl = inf{ j > 0, : bk,,,] is closed} 

and for m 2 2 ,  

0, = inf{j> Cm-l: bk,,,, is open}, C, = inf{ j > 0, : bk,,,, is closed}. 

Note that C, - 0, are IID random variables with a geometric (1 - p )  distribution, and 
Oiil-C, are I ID random variables, independent of {C,-0, )  also, with a geometric 
( p )  distribution. Therefore - 0, are I ID with mean 1/( 1 - p )  + l / p  = l / p ( l  - p ) ,  
so by the strong law of large numbers, 

0, ~ ~ 2 ( 0 , - 0 1 - , )  01 AS 1 _-  - +-+- 
m m m p(1-p) 

Defining T, = sup(m: 0, S r } ,  we have 

T, T, + 1 T, T, - - S - - S - ,  
T,+1 0 , + 1  r 0 ,  

Applying the almost sure convergence of Om/ m along the subsequence T,, we find that 

Tr / r+p( l  - P I  almost surely, 

so by the dominated convergence theorem, 

E [  TJrI + P(1- P) as r + c o .  

Letting Rk, ,  denote the number of runs of open sites on bk,, which do not contain t k , ,  

or t k + 2 , r ,  we have 

Tr,-ki- 2 S Rk,, S T[,-k], 

so 

E ( R k , ~ ) / [ x - ~ l  + p ( l  
If exactly two of the sites i = 1,2,  3, are closed, then one of the line segments 

bk.l may contribute open clusters which do not include vertices of T k + l .  If all three 
sites t k + l , r ,  i =  1,2, 3, are closed, then all three bk,,, i = 1,2, 3, contribute open clusters. 

The expected number of clusters which contain no sites of Tk, 1 S k S n, is then 
n - 2  c [ E  (Rk,l) P (  1 - P I 2  + 3E (Rk,l) ( 1 - p )  '1. 
k = l  

Divide by the total number of sites in the region, and let n + CO to obtain the limiting 
clusters per site function for G, 

;[P'( 1 - pI2  + 3p(  1 - ~ 1 ~ 1 .  
Since the function is a polynomial, there is no singularity, so the Sykes and Essam 
critical probability p E  is not well defined. 

Note also that the limiting clusters per site function is identical for all graphs G,, 
0 < x < 1, SO a cluster-per-site function does not uniquely identify a graph. 
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4. Example with pH < f 

We now construct a class of fully triangulated graphs Gk, k 2 2, such that pH S 1/( k - 1) 
for Gk for all k 2 2. This class provides a counterexample to the conjecture that pH 2 1 
for all fully triangulated graphs. 

To construct Gk,  begin with the graph G". For n 2 2 ,  label the bonds on the 
perimeter of the triangle with vertices T,, as d , , ,  1 S i S 6, moving counterclockwise 
from t,,,l (see figure 6). Insert k"-' equally spaced sites on d , ,  for all n and 1 S i S 6. 
For each i = 1 , 2 , 3 ,  insert bonds connecting the site t , , ,  to each of the 2k sites on 
d3.2,-I and d3,21. 

The remaining non-triangular faces are all partitioned into triangles by the same 
procedure. Fix n 2 3 and 1 S i S 6. Label the sites inserted on d,,,l as e,, e2, . . . , e k n - 3  

and the sites inserted on d,,+l,l as f l ,  f 2 ,  . . . , f k n - 2 ,  starting in both cases from the vertex 
in T,, where d, , ,  and d,,+*,,  intersect. For each j =  1 , 2 , .  , . , k"-3-1 ,  insert bonds 
connecting e, to f ( k - 1 ) , + 1 , .  . . , f k , + l .  Also insert bonds connecting ekn-3 to 
f k " - ' - k + l , .  . . , f k n - 2 ,  and the site at the endpoint of dn.,+l in Tn+l (see figure 7 for G3) .  

Figure 6. Figure 7. G,. 

The graph Gk contains a Bethe tree with coordination number k, as may be seen 
by deleting all bonds of G' and the bonds from e, to f k , + , ,  1 Sj=G k"-3- 1, and from 
ekn-3 to T,,+l in the construction above. Such a Bethe tree has critical probability 
pH = p ~ = l / ( k -  1) (see e.g. Essam (1972)). Thus, by its inclusion in Gk, the critical 
probability pH S I / (  k - 1) for Gk. 
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